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PREFACE

This report incorporates the work done in a number of difterent etforts
to improve the Articulated Total Body (ATB) Model's capability to
simulate human body biomechanics in various dynamic environments,

espectally aircraft ejection with windblast exposure.

The majority ot moditications to the model fall into six categories:

wind force cortion

joint crift correction

edge etfect option

multi-axis angular displacenent
vehicle motion prescription

slip joint opticn

hyperellipsold option

These 1mprovements have been combined to form the ATB-IV version on the
Armstrong Aerospace Medical Research Laboratory's (AAMRL) Concurrent
computer system at Wright Fatterson Air Force Base. AAMRL, Systems
Research Laberatovies Inc.. J & J Technologies Inc., and the National
Highway Traffic Safety Administration have all contributed to the

technical work described herein.
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1.0 INTRODUCTION

The Articulated Total Body (ATB) Model is used at the Armstrong
Aerospace Medical Research Laboratory (AAMRL) for predicting gross human
body response in various dynamic environments, especially aircraft
ejection with windblast exposure. Aerodynamic force application and a
harness belt capability were added to the Crash Victim Simulation (CVS)
Program (Ref. 1), by Calspan Corporation in 1975 for AMRL (Ref 2.), and
the resulting program became known as the ATB model. In 1980, Calspan
made a number of modifications to the ATB model combining it with the
then current 3-D Crash Victim Simulation program to form the ATB-11
model (Ret. 3). Complete documentation of the program through the
ATB-1I version was performed by Calspan Corp. (Ref. 4). A new version,
ATB-111, was generated which 1ncluded the improvements made by J & J
Technologies Inc to model the body response to windblast for AMRL (Ref.
57.

A number of additional efforts have been made to improve various aspects
of the ATB-III model, with emphasis on its capability to simulate
alrcraft ejection with windblast exposure as well as complex automobile

accidents.

This volume, Modifications, contains a description of the major changes

made to create ATB-1V and the theory used to develop them.

Section Two of this volume includes a new wind force option allowing
segment contact ellipsolds to block the wind as well as other
aerodynamic force improvements. Corrections to prevent angular drift 1n
the joints are described in Section Three. The edge effect option in
Section Four ensures that a contact of a plane with an ellipsoid will
not be ignored and that a smaller force will be applied when only part
of the contact area is withiu the plane boundaries. Section Five
contains an improvement allowing the prescription of multi-axis angular

displacements to describe the vehicle motion. A new option allowing a
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joint to slice along an axis 1s explained in Section Six. Section Seven

ccataias 8 new hyperellipsoid option. A summary of other modifications

that form the ATB-1V version 18 included in Section Eight.

These changes have been made 8o that previous input decks are valid with

changes required only in the H cards. The updated input description

outlining any changes needed and describing the use of the new optioans

18 described in Volume 2, the User's Guide. Sample input decks using

the new options and the resulting output are also included it Volume 2,

along with an updated list of numbered stops. Volume 3, the

Programmer's Guide, contains the listing of the updated ATB-IV program.



2.0 AERODYNAMIC FORCES

The aerodynamic routines sdded -0 the model in 1975 (Ref. 2) have
some limitations which make simulating wind forces difficult. For
example the aerodynamic pressure is prescribed tabularly as a function
of time, but this requires knowing the velocity profile of the seat
before a simulation is made. Since the seat's motion may depend on the
wind forces, estimation or trial and error has to be used in defining

the aerodynamic pressure.

Also the aerodynamic forces are applied to the entire projected
contact ellipsoid area that has penetrated the wind plane even 1if the
ellipsoid 1s partieily or fully blocked by another ellipsoid. This
causes a disproportionate amount of force to be applied in many cases.
This 1s especially significant for the torso segments where the
ellipsoids substantivally overlap. More than 30 percent cf three torso
segment 's combined area i1s within another ellipsoid, resulting in the

aerodynamic force on these segments being much too large.

The original aerodynamic forces are applied to any segment by
specifying an aerodynamic pressure, a boundary plane, and a contact
ellipsoid associated with the segment. When the ellipsoild penetrates
the boundary plane, the wetted area is estimated and a pressure from the
tabular data, defining the time dependent aerodynamic pressure, 1s used

to calculate the force and torque that is spplied to the segment.

Three changes have been made to the :cutines to allow more

flexibility in applying aerodynamic forces.

1. The aerodynamic pressure can be a function of a

segment's velocity.

2. A time dependent drag coefficient can be included in

calculating the wind force.




3. An additional method of calculating the wetted sgrea,
that allows segments to be defined which block the ellipsoid

from the wind, has been added as an option.

2.1. VELOCITY DEPENDENT PRESSURE

To allow for o velocity dependent serodynamic pressur~, subroutine
KINPUT is altered to read in E.® cards that coptain the specific heat
ratio, the speed of sound, and the absolute pressure for the altitude
which the simulation 1s to represent alony with the definitions of twe
segments. The aerodynamic pressure will depend on the velocity of the

first segment with respect to the second segment.

The aerodynamic pressure, FI, used in WINDY to determine the aerodynamic

forces, 1s calculated from the definition of dynamic pressure:

FT = (1/2)kp, (V/c)?

where k is the ratio of specific heats
¢ 18 the speed of sound
P, is the absolute pressure
¥V is the velocity of the first segment with respect

to the reference segment

Note that FT is a pressure a4nd is multiplied by a wetted area 1n
subroutine WINDY to determine the wind force applied to a segment. FT
can be defined as time dependent using the same input cards as before,
or as vel-city dependent by cpecifying a specific heat ratio. How FT is
spplied to a segment in subroutine WINDY, has no functional dependence

on the methou used to define FI.




2.2 DRAG COEFFICIENT

Time dependent drag coefficient functions can be defined as wind force
functions on the E.6 cards. They follow the same format as the time
dependent wind force functions, although the drag coefficient is a
scalar quantity rather than a vector. Before the aerodynamic préssure

15 used 1in WINDY, it is muitiplied by the drag coefficient, Cp.

)
o]
i
o
o
)

This can be used to simulate the effects of the drogue chute opening or
other events that etfect the drag. If there is no drag coefficient

defined, the default value is 1.0.

2.3 BLOCKED WIND

To allow tor blocking ot the wind, a recond method of applying the wind
force has been added to subroutine WINDY. This involves projecting the
ellipsord, to which the aerodynamic force is beilng applied, as an
ellipse to define the wetted area. Then this ellipse 1s divided into
incremental areas, whose center points are checked for penetration of
the wind plane and for blockage by other segments. Each area that
passes these tests has the wind force applied at its center point. This
allows for overlapping and connected segments. Since this new grid
method can increase run time significantly, the original wethed can
st1ll be used for any or all of the segments to which a wind force 1s

being applied, without any changes to previous input decks.

Subroutine WINDY contains the major changes that i1ncorporate this
new method for applying the aerodynamic forces. Much of the analysis
needed for this method is based on the derivations developed for the
VIEW program (Ref. 6). In WINDY, after checking if there is any
penetration of the segment through the wind plane, and getting the wind

pressure from the wind force functions, the program chooses a method for
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the wind force calculations depending on the input. The original method
uses a calculated area of the ellipsoid, while the new method allows for
blocking of the wind by other segments, by using a grid to determine the

area.

2.3.1_ Project Ellipsoid

For the grid method, the first step is to set up a coordinate
system associated with the wind. This viewpoint coordinate system is
located at an assumed origin of the wind with it's z-axis directed

towards the origin of the inertial coordinate system.
Define,
FT as the wind force vector (inertial coord.)

VP as the origin of the viewpoint coordinate system

(inertial coord.), which is set equal to -10000FT.
DVP as the direction cosine matrix for transformation of
vector components from the imertial to the viewpoint coordinate
system.
The DVP transformation is chosen such that the X-axis of the viewpoint
coordinate system is parallel to the X-Y plane of the inertial

coordinate system. DVE can be calculated as follows:

Let
ft = F¥/ |FT| , which is the unit wind force vector

form

XNORM = ﬂlftlz + ft22, which 18 the projected length of ft
on the X-Y plane.




Let

~

vp = ft

[N

then 1t can be shown that

~ A o
Xp = (ftal - ft1))/XNORM, is a unit vector nommal to
Evp and parallel to the X-Y plane of the inertial

coordinate system.

The third unit vector can then be obtained using the vector product

The transformation matrix is then formed by placing these unit vectors

in row form

ft)/XNORM ~ft)/XNORM 0
Dyp = ftift3/XNORM ftoft3/XNORM —~XNORM
fry frg ft3

The contact ellipsolid is projected onto a plane parallel to the X-Y
plane of the viewpoint coordinate system. Since the viewpoint is far
away from the ellipsoid and the Z-~axis is nearly directed at the
ellipsoid, the projection is assumed to be elliptical. To solve for an
ellipse matrix, three radial vectors of the ellipsoid, pointing to a
surface point that forms the contour of the projected shadow, must be
determined. BD(7-15,M) is the matrix that defines the surface points of
ellipsoid M with respect to its principal axes. First, this ellipsoid
matrix, BD(7-15,M), is transformed to the viewpoint coordinate system

and designated as AM(3,3). This is accomplished by:

AM = Dpvp DT Bp D pvpT

where D is the direction cosine matrix that traansforms

from the inertial to the ellipsoid principal coordinate system.




In order to define the projected ellipse, three vectors are chosen which
lie respectively in the X-Z plane, the Y-Z plane, and the (X=Y)-Z planme
of a coordinate system parailel to the viewpoint system but with its
origin at the ellipsoid center. These vectors are shown in Fig. 1, and

have components

/
/Rlx 0 /R3x

0 Ry = Ryy Ry = | R3y

Riz \Rzz R3z

wi
-
1]

with R3X=R3Y
As seen in Fig. 1 the associated vector 51 from the viewpoint to the tip
of ﬁl is pormal to the normal vecter n} for the point defined by El on
the ellipsoid. Therefore,
A, - P; =0 and W) = AM R} 1) & 2)
Combining equations 1 and 2,

AMR; - Py =F) - AMR) = 0 3)

Also from the figure,

—

-§1=S +§1 4)

Substituting in eq. 3 for ?1 from eq. 4,

(S_ﬁ-fil)'réﬁil=0=§F(T;Aﬁ'ﬁl+i'r1&§1 5)
RT; AM R} = 1 from the definition of an ellipsoid. 6)

[

Rl = <] 7)
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Subroutine SOLVR solves this equation for the components of Kj. The

same procedure is used to solve for the other components of Kz and Kj.

To solve for il, Ez, and R3, we will respectively treat these as Case

No. 1, Case No. 2, and Case No. 3.

For all three cases expending eq. 7

AMy;  AMp)
(SMy, SMy, SMz) AMyp  AMy3
] AM3)  AM3)

or

(SMyAM)] + SMyAMg) + SMzAM3), SMxAM); + SMyAMyp + SMzAM3j,
SMxAM]y + SMyAM;3 + SMpAM33) B = -1

This can be further reduced to

(ALSMy + A2SMy + A3SMgz) Ryory + (A4SMx + A5SMy + A6SMz) Rz = -1

where
Case _No. 1 Case No. 2
Al = AM Al = AMj,
A2 = AMy, A2 = AMyj
A3 = AMy; A3 = AM3)

10

Cage No. 3

Al = AMj) + AM;2

A2 = AMy; + AM23

A3 = AM3) + AM3j




A5 = AMg, > for all cases

Ab = AM3j

J

Making the further substitutions;
B = AlSMy + A2SMy + A3SMy
D = A4SMy + ASSMy + A6SMg
we get
B Ryory + D Rz = -1.
Solving for Ry,rey
Ryory = -(D/B)BRz -(1/B). (8)
Now the R vectors can be written

[ —(p/B)Ry -1/B]

Rl = 0
Rz
. 0 -
Ry = ~-(D/B)Rz ~1/B
R
L Z J

C(p/B)Rg -1/B ]
Ry = -(D/B)Rz -1/B
Rz

11




Substituting R into eq. 6 and expanding,

A7 Ryory? + 2 A8 Ryory Rz + A6 RzZ = 1 (9)
where
Case No. 1 Case No. 2 Case No. 3
A6 = AM33 A6 = AM3j Ab = AM3j
A7 = AMp A7 = AMyo A7 = AMjy + 2AMp2 + AMyo
A8 = AM); A8 = AMy3 A8 = AMj3 + AMj3

Substituting eq. 8 into eq. 9,

A7(-(D/B)Rz -~ 1/B]2 + 2A8Rz[-(D/B)Rz-1/B] + A6RzZ =

l
—

Expanding and combining like terms,

{A7(D/B)2+A6-2A8(D/B]Rz2 + [2A7(D/B2)-2A8(1/B)]Ry + A7/B2-1 = 0

Therefore,

Rz = -T2 + VT22 - 4T1T3  and Ryory = -(D/B)Rg - 1/B
211

where

Tl = A7(D/B)2 + A6 -2A8(D/B)
T2 = 247(D/B2) - 2A8(1/B)
T3 = A7(1/B2) - 1.

12




WINDY calls subroucine SOLVR which requires as input variables the
values of Al, A2, A3, A4, A5, A6, A7, A8, and SN for each case.
Subroutine SOLVR returns corresponding values for Ry,,y and Rz. The
three R vectors obtained satisfy the three dimensional ellipsoid, and

lie in the appropriate planes.
These R vectors are then projected as if the viewpoint was an
infinite distance away. Therefore, the X and Y components of R are the

two-dimensional projected vectors, RZ.

KZX = Ry RZY = Ry

The equation for the ellipse 1is,

ASo, A

wn
N
N

A}, ASu]
J

Since there ate three R2 vectors and three independent components of AS,
AS can be obtained by solving three equations simultaneously which is

done in subroutine SOLVA.

2.3.2 _Set-up Grid Pattern

To set up the grid pattern for the ellipse, the majct and minor
axis vectors are needed. These vectors are found by solving for the

eigenvalues of the ellipse matrix, AS, by imposing the condition

AS R = »R.

This condition 1s true only for vectors that represent the major and

minor axes of the ellipse.
l'ASH Asy2] [Ry A Ry

[Aslz AS2 Ry ARy ¢

13



Or,

=0 (10)

Therefore,

= ASy| + ASyp 1V/(AS]| + A822)2 - 4 (AS)) ASyy -Aj2)1/2

2
With the e¢igen vectors,
1 ASy, Ry
R, = — -
o/ .l Y -—AS“ RY
(11)
! («2 -AS27 Rx
R, = ——| -
—_
.\/ sz ASyy Ry

These are the major and minor axes vectors of the ellipse.

With the major and minor axes of the ellipse found, a grid is laid
over the projected ellipse (Fig. 2) and each corner point of the grid is
checked to see if it 18 in the ellipse, through the wind plane or not
behind a blocking segment. 1f all are true, then a wind force is

applied to the incremental area (AREA) shown shaded in Fig. 2.

14




AREA

X

, ' ’ -
Srae

Corner FPolats

ve

o

Minor Axis

Major Axis

¥igure 2 Grid Overlay

2.3.3.) Check if Corner Pojuy Is Within Projected Ejlipse. ¥ is the

tvo dimensional vector to a corner point. If KMT 48 BM<1, then B is
withio the ellipse.

RMZ-D
)
Eilipsoid %
N1 vp
< ¥
— vp
SM 3
Projected vp

Ellipse

Figure 3 Three Uimenatonal Locaticn of ™




For the next two checks, the three dimensional location of RM on
the ellipsoid is needed. See Fig, 3. The Z componeut of the three

dimensional vector, RM, is found by solving the ellipsoid equatioen,

j— Ay AM;  AMp3 | [y
(R, RMy, RMp) | AMpy MMy AMpg RMy | =1
LA  AM3  AMyy | | RMg |

Expanding and solving for RM

RM, = -TMy % \/TMz2 -4TM; TMj
2TH;

where
™™, = AM33
M) = 2 (RMx AMj3 + RMy AM;3)
TM3 = RM,Z AMj) + RMyZ AMp, + 2RMyx RMy AM;p -1

and 8NI is the vector from the viewpoint to RM on the ellipeoid's

surface and is given by
5Nl = 5¥ + RM

with gll vectors expressed in the viewpoint coordinate syatem.

2.3,3,.2 Check if RM Is Pepnetrpsing Wind Plage. From Fig. 4 define

) N . .
PL = normal unit vector to wind plane (in the segment coordinates

to which plane ie attached)

16




PL4 - nearest distance from plane segment origin to plane

XM - vector from plane segment origin to tip of RH (in the

segment to which plane is attached)

— N
BTS - component of XMM alomg PL

A

BTS = XMM - PL

1f BTS > PL, then RM is penetrating wind plane.

RM

/
L— wind Plane Segment

Coordinate Svstem
~«— Wind Plane

Figure 4 Ellipsoid/Pliane Penctration
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First, the ellipsoid matrices for the segments that may be blocking the
wind must be transformed to the viewpoint coordinate system. This is

done using
Ar; = DvP; D;T BD; D; DVE,T

Also §Yi is defined as the location of the i-th blocking segment in the

viewpoint coordinate system (Fig. 5).

— Blocking Scyment

(X, 1) (X, Y,B1)

Line of
Sight

P 2]

Figure 5 Check For Blocked wind

A line of sight is defined 8s a liLc aormal to the viewpoint X-Y
plane through the tip of RM, and is used to determine if the wind hits
the blocking segment before reaching RM (Fig. 5). The two-dimensional
vector, (¥, Y), from the center of the blocking ellipsoid to the line of
sight is used in defining the point where the line of sight entere the

blocking ellipsoid.




e
1

= SN1x - SIy

(o
i

= SNly - Sly

The Z component of the entry point, Bl, i1s calculated in the same manner

as KMy earlier,

AL, ALy, ALz [ X0

(X, Y, BL) ALy,  Aly, Al Y| =1 (12)
Alyj Algo Aljj B1
- - L -

If the line of sight does not pass through the blocking segment, Bl in
equation 12 is a complex number. The entry point could be beyond RN,
therefore, the distances from the X-Y plane of the viewpoint coordinate

system are compared. If SNl © SIz + Bl, then BM is not blocked.

Each of the possible blocking segments are checked using this
method. If each of tnese checks are true, then a wind force is applied
to the incremental area at RM. Each corner point is handled the same

way and the forces are totaled and added to the Ul and U2 arrays.

2.4. CHANGES TO THE PROGRAM

A new H card 1s now needed for the wind forces to be output as
tabular time histor:ee  The wind force applied to amy segment can be

output to the tabular time histories in any reference system.
This addition requires changing common block RSAVE to:

COMMON/RSAVE/ XSG(3,20,3), DPMI(3,3,30), LPMI(30), NSG(9),
MSG(20,9), MCG, MCGIN(25,5), KREF(9)

The s1ze ot NSG, MSG, and KREF are increased to allow for the

additional set of tabular time histories.
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Besides RSAVE, the other changes require common block WINDFR to be

modified to:

COMMON/WINDFR/WTIME(30),QFU(3,5),QFV(3,5),WF(3,30), ININD(30),
MWSEG(7,30),NFVSEG(6),NFVNT(5), MOWSEG (30, 30)

The size of MWSEG is increased to include the drag coefficient

function number and the number of possible blocking segments.

New variables that are added to the COMMON block are:

WF(3, 30) Wind force vectors applied to segments
(in local reference),
MOWSEG(3G, 30)
MOWSEG(2I-1, J) Segment identification number of I-:h
segment that can block segment J,

MOWSEG (21, J) Contact ellipsoid associated with the
MOWSEG (2I-1,J) segment.

In addition to the common block changes, coding changes affected a
number of subroutines. Subroutines WINDY and KINPUT contain the
majority of these changes and SOLVA and SOLVR are new subroutines. In
Volume 3 of this report, the listing of the ATB-IV code has the labels,
WINDOP or WINDROT, in column 73, of all the mew or changed lines needed

for these wind force cptions.

To use the velocity dependent pressure, drag coefficient, or blocked
wind the input deck has to be modified. The input description for
ATB-1IV 1s in Volume 2 of this report and describes these modifications.
Note: Previous ATB or CVS input decks require a blank card to be

ingerted for H.8.
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3.0 ANGULAR DRIFT CORRECTION

The locked axes of the joints in the ATB Model often drift from their
original position because of inherent inaccuracies due to the numerical
integration process. The CHAIN subroutine was written to correct for
these errors after each integration step, but the drift of the locked
axes still occurred, especially during long simulations. The code
modifications described here correct this drift and the sudden shifts in

the joint azimuth angles.
3.1 TECHNICAL DISCUSSION

The ATB Model has four types of joints, they are:

1) Ball and Socket Joint,
2) Pin or Hinge Joint,
3) Euler Joint, and

4) Null Joiut.

The Ball and Socket Joint and the Pin Joint may te locked. The
Model will unlock these joints when a specified torque 18 exceeded. The
Euler Joint has three axes which may be locked or unlocked independently
thus providing eight states for the joint. The Null Joint is used to

provide the option of disjoining sets of segments.

In the ATIB Model constraints are iuwposed on the joints by computing

a constraining torque. The bhasic equations are:

1]

P 31 + D) BJ = other torques (13a)

I, Wy - Dy B3 = other torques (13b)

where L . Iz are inertia matrices of the adjoining

segments,

W] , wy are the angular accelerations,
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Dy , By are direction cosine matrices,

P is a projection matrix which depends on
the type of constraint, and
q ie the constralunt torque.

The comstraint equation (which is needed to scive for ) can be best
derived by considering the case of a Pin Joint. 1In this joint the
constraint is that the pir vectur in one segment must coincide with the
vin vector in the adjoiaing segment. The pin vector defines the free

axis of the join* (the Pin Joint has ounly one free axis). The equation

is:
pI; iy = DT Ry = & (14)
where El , hy are the pin vectors (1x3 matrices)
in the respective segments. These
vectors are constant in the
segments.
b 1s the instantanecus pin vector in
inertial reference,
and

Y, , RY; are the transposes (inverses) of the

direction cosine matrices.

Differentiating equation (14) yields an equation in the velocities W)

and ¥2 ¢pys:
pT, G x By) = DT; (9 x hp) (15)
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Differentiating equation (15) yields an equation in the acceleration,

thus:

DT (&) x bp) + (W) x (W] x b))
(16)
= DTy (¥ x hp) + (§y x (¥ x hps)

Equation (16) is the desired constraint equation for the accelerations,
however it is only of rank 2 and we need an equation of rank 3 to solve
for the torque. This is obtained by observing that the constraint

torque can have no component on the pin axis, i.e.

o
-

q = 0 an

Equations (16) and (17) can be combined into & single matrix equation of
rank 3 by crossing equation (16) with h and adding the term bhlg. The

resulting equation can be put in the form:

2Dy v - 2Ry ¥, + (1-R)3
(18)
= ETQ W DTZ (Ez X Wp) - ETl W) DII (El x W)

The projection matrix £ is given by

P=1-hht where L is the identity matrix.

Equations (13) and equation (18) are the basic equationsused in the
ATB Model to form the system equations which are solved for the
constraint forces and torques and for the linear and angular

accelerations.
Details on the form of equation (18) for a locked joint and for an

Euler Joint are given in Volume 1 of Reference (4). The only

differences are the form of the projection matrix P and the right hand
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side of equation (18). In particular for a locked joint P is the
identity matrix and the right hand side of equation (18) is the zero

vector (1x3 matrix).

3.2 CORRECTION OF THE DRIFT PROBLEM

The nvoblem with d.ilt arises since the constraints are imposed on
the acceleration (equation (18)) and the values of angular velocity
(¥W's) and angular position (Q's) are obtained by numerical integration.
Errors can arise because of errors in the solution of the system
equations and errors due to the numerical integration process. Errors
of this nature are unavoidable because of the finite precision
calculation on a digital computer. Thus we may find that equation (14)
and equation (15) are not satisfied to some desired degree of precision
at some point in the solution process. To correct this, Subroutine

CHAIN was modified.
Consider the following equatione:

Let @ = hy x (D2 BT) b)), & vector (1x3 matrix).

If the vector U is zero then 32 and Hl are aligned. If T is not
zero it is perpendicular to the pin vectors h; and hy and has a
magnitude which is the sine of the angie between the pin vectors. This
vector is used to define the rotation operator that is applied to
segment 2's direction cosine matrix aligning the El and FZ vectors;

D* = [ el +@@l/(1 +¢) - (T x)IDy (19)

where ¢ is the cosine of the angle between the pin vectors,

and (U x) is the matrix analogous to a vector cross product

operation.
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The velocity vector is also modified;
¥y* = Do* ph) W] + hy (8T, W, - BT} @) (20)

Subroutine CHAIN (at the option of the user) modifies the direction
cosine matrices D and the angular velocities W as specified in equations
(19) and (20). This insures that thc sagular position counstraint
(equation (14)) and the angular velocity constraint (equation 15) are

satisfied for pin joints.

3.3 CORRECTIONS TO THE PROBLEM

The ATB model was studied in detail to determine why the above
procedure was not functioning properly. Two errors were found, they

are:

1. The right hand side cf equation (12), which is
computed by Subroutine SETUPl, was being computed

before the direction cosine matrices were modified.

2. Incorrect L vectors were used in Subroutine CHAIN

for an Euler Joint 1in states 4, 5, or 6.

Error 1 was corrected by calling Subroutine CHAIN before calling
Subroutine SETUPl in Subroutine DAUX, and error 2 was corrected by
correctly detining the h vectors. Also the code to correct for drift
was removed from subroutine CHAIN and put into a new subroutine called
DRIFT. This required that the dimensions of the HIR array and the CONST
array, which are in COMMON/CEULER/, be changed. The new arrays are
HIR(3,3,90) and CONST(5,30). This change was made in all the routines
that included this COMMON.

Subroutines EJOINT, INITIAL, and UPDATE were modified to store the

variables needed for the new drift routine.
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Listings of the new DRIFT subroutines and of the changed
subroutines are in Volume 3 of this report. New or changed lines are

labeled with JDRIFT starting in column 73.
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4.0 EDGE EFFECT OPTION

In the past, problems often developed in ATB simulations when an
ellipsoid came in contact with a plane near the plane's edge. If part
of the ellipsoid contacted the plane edge but the center, of the
cross-sectional ellipse, containing the area cut by the plane, did not
lie within the plane boundaries, then no torce was applied as if no
contact had occurred at all. However, as soon as this center moved
within the boundaries of the plane, a full contact force was applied.
The planes had to be adjusted and modified frequently to avoid
instantaneous jumps in force when comtact occurred at object corners.
These new routines have been developed to solve this edge effect
problem. In particular, use of the new edge effect option insures that
a contact of a plane with an ellipsoid will not be ignored and that a
smaller force will be applied when only part of the contact area is
within the plane boundaries. Also an option was added allowing a force
to be applied when the ellipsoid has completely penetrated the plane, if
the edge effect option is not used. Another alternative for improving
contact force calculations 1s to use a hyperellipscid to describe the

surface. This option 1s described in Section Seven.

4.1 NEW SUBROUTINES

4.1.1 Subroutipe_ PLELP

Subroutine PLELP computes the point of maximum penetration of an
ellipsoid associated with segment m intersecting a plane associated with
segment n. Previously the point of maximum penetration was projected
onto the plane. If this projection fell outside of the boundaries of
the plane, the contact was ignored. A five way opcion has been added to
the routine. The choice is made by the user by inputting an additional
integer on the F.1.B - F.1.N cards. This integer is stored ia the
twenty third location of the TAB array associated with the contact. The

options are:
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TAB(NT+22) . O,

call new edge effect routine PLEDG, no

force 15 computed for complete penetration,

use standard finite plane test, no force 1s

computed for complete penetration,

treat plane as infinire (bypass
edge test), no force is computed for complete

penetration,

treat plane as infinite (bypass edge test), a

force 1s computed for complete penetration,

use standard finite plane test, a force 1s

computed for complete penetration.

Equations_usea .n PLELP,.
Let: (Fig. 6
Z, location of the refereace poin:t of segment m,

(inertial system)

[}
=}

lecation of the reference point or segment n,

(rnertial systom)

&

ro
-

offset of the ellipscoid, {inertial system)

first reference point for the plane, (inertial

system)

I

unit exterior normal of the plane,

ellipsold matrix.

Then the equations are:

xﬁc =Lp ¢+ am

—

Zn - P1 , vector from Pl to center of

ellipsoid.




[l i
P2
P2
P

Fiyure 6 Plane ~ Ellipsoid Contact
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bet = - ‘Txnc , distance from plane t¢ ceater or
eliipeord "positive 1f center ot

ellipsold has penetrated the planel.

J, the corpounent, ncrmal to the plane,
of the vectur trow the point of
maximum pernetration to the ellipsoid

center.

fa) . -
T / bte , vector from center of ellipsoid to

gm

n
i
!

point of maximum peretration. If

the euge rust . oo s vsed tais vector
18 computed by PLEDG as the location
o. the centreic ¢t the coumon aree of

inturgection.

b = bet - ble¢ , penetratica. il the edge routlne is

twse i, the penetreation 1& computed by

o
=
<,
b
ok
]

rro pOlHﬁ an tre :Elipsn;d

Lot aloniy L Lotinal te the plane)

tp prLtToLG
an.r 7 . Shet Nie fL perireler s O to Jdetemmine
1 tiler el LS UOCurIred

Se oS UTUo bt iae FiooOG ).

Note thal 1% amr is Nega. v- Lo e.iita=oil doesu't intersect the
piane. If amr 1s zero the ¢!ii.~civ e tsapent to the plane. The
current logic in Subroutine Vil 1gncrer the contact unless amr 1s
greater than zero. This has . ¢ eit. .t ¢t wrcppieg the contact once the

ellipsoid has fully penetrat-2 the nlane.
Rlg = Ry + Oy , locative of the polnl ol maximum

penetration reiative te the

reference poiut of segment m.
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R, = Ry + Oy + Zy - Z,,, location of the point of

maximum penetration
relative to the reference

point of segment n.

4.1.2 Subroutine PLEDG

1f the ellipsoid intersects the plane, the figure of intersection
will be an ellipse. Subroutine PLEDG is used to determine if this

ellipse has any common area with the finite plane.
Z =al + bV is a point in the plane where

are the vectors defining the boundary of the

finite plane, and (U = P2 - 1, V = P3 - PI,

(=1
<l

where P1, P2, P3 are the vectors defining the plane),

and
a, b are scalars. Let
W = (bet/bte)Ry, be the vector from the center of the
ellipsoid to the center of the cross-

s ctional ellipse.

d];, dy 1s location of the center of the ellipse from

the reference point Pl in U, V coordinates.
Then, the equation of the ellipse is
(Z -WTE (@ -W) =1.
This may be written as

aze11 + labejp + b2e22 = n 2, whese (21)

e;] = GT@—, €12 = UTEV, €yp = VTKV, and p 2 =1 —WTB-J-
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(Note: . 4 is the sale as amy in PLELP.

The extreme valuvs of & sud U for the elilpse are:

(Fig. 7)

ag9 = sqrt {epz . «/delt) , larjest value of a,

by2 = - eigzagpfess, value of 5 at z,7,

agy ¢ — agy , smal.est vaie of e,

041 ~ “bgza , value ¢f b at &y,

al
bpa = sqrt (eyy . Z/delts . largest valoe of b,
apy = ~e]gdyp/€1;, value ci a at oyng.

Dy, & -bpy, smallest valuas ol o,

ag1 -apy » value ©f a at by-

Fivire /7 kExtreme Values of Ellipse




Computation of the intersection of the ellipse and the finite plane (a

parallelogram) is performed as follows:
Define
agin = max(ag,), -dj), and
agmax = ®minlago, 1 ~ dy).
If apip 16 greater or equal to agpay, the ellipse has no common area
with the finite plane. (It lies entirely to the right of the finite
plane or entirely to the left.)

Detf ine

byin = max(bp), - d), and

brgx = minlbyy, 1 = dg).

It bp,p 18 greater or equal to by,y, the ellipse has no common area
with the finite plane. (it lies entirely above the finite plane or
entirely below.)

1t byjpn 18 greater than by}, the lower boundary of the plane

intersects the ellipse. The corresponding values of a may be calculated

trom the ellipse equation 21 as
dfgn = ~buinera/er) - sqrel. 2/ejy- delt(byjn/e))?)
afpn = ~byipcp2/ep) + sqrtl, 2/ep)- delt(bg;n/e11)?)

Similarily it by, 1s less than bpj, the corresponding values

of a 4are
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A

~bpaxei2/ery - sqrtl‘.Z/elL—aeLt(bmax/ellzj

afmx ~
afpx = ~bpax€12/€11 * sqrri @Z/G'llhdelt(bma)l/ell)z]

- i T ‘
N o \
/o A \Il | / a

) )\ ! Tmi .
A

0 ATeg Boundatr

Peferring to Figure 8, the most general interscction of the plaue

and the ellipse cousisus of three secticus comprising an upper boundary

and three sections comprising a lower boundary. The computation of the

area and the centroid is done in subroutine PLREA using the abscissa,
the seciions are

a,

as the independent variable. The abscissa ol

determined as {ollowe:

N~
I~



Section
1 left upper arc of ellipse:
initially ap) = ay2 = apjps then
if bygx > bal,  ap2 = minlagpys apax)
if bpay > bgl, and bpjp > bals
an1 = max(aggn: 4nin)
II upper straight line boundary:
agp = min(agpy, agax’
afy = max(afpy, apin)
111 right upper arc ot ellipse:
initially ay) = ax2 = apgx» chen
it bpgx > ba2»  8x1 = max (8gpx » apin)
if bpax - by2, and bpjn > ta2,
axy = min (agpq, apax)
1 left lower arc of ellipse:

initially by; = bgp2 = apip then
1f byjn ~ bals bp2 = min (afgq> anax)

if bpjn ° byy, and bpax © bals
bpi = max(agyys 8pin)




L' lower straight line boundary:

bfp = min(afpn, amax)

maxtag,,. fnig

———
o
"
8
it

IIr! right lower arc of ellipse:
. initially byy = byz = apax, then
' 1L byt baz,  bxr = maxlafpn, agig)

1L bpjp = ba2, aad by, o by,

byx2 = mi“(afva 3pax)

With the above legic, 11 the jower abtscissa of &ny section 18
greater than or equal to the upper limit the section does not exast. If
! nce section uif the upper beundary exists then theve is ne cormon area and

the routine exits.

If it 1s determined that a coemmon area exists, subroutine PLREA 1s

called to compute the centroid of the commcn area.

Next, tne vector from the center of the eilipsolu to the centroid

of the commor urea 1s computed as

ac, b. are the abscissa and the ordinate of the
centro1d and
w 18 the vector from the certer of the

ellipsoid to the center of the ellipse
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Finally, the penetration parameter, p, is computed as the point on
the ellipsoid below the centroid. This is done by using the equation of

the ellipsoid

(R - p%)Tg(ﬁm - p%) =1, where T is the normal to the

plane.
This equation is a quadratic in the parameter p and may be readily
solved with the quedratic formula. The penetration parameter p is the

positive solution of this quadratic equation.

4.1.3 Subroutine PLREA

This routine computes the common area and its centroic¢. Since the
equation of the ellipse (equation 21) is a quadratic the integration can
be done in closed form. The abscissa is used as the independent
variable. For a given value of the abscissa, a, the ordinate, b, is

computed from equation 21 as

g
[

= ~aejy/egy + sqrtlr/egy ~ d(a/ezp)?], where (22)
2 and d = delt, are already computed by PLEDG.

o]
!

The area i1s computed by adding the area contributed by each ellipse
or straight line section. For the ellipse sections incremental areas

are obtained by integrating equation 22 for each arc:
Sbda = h%[t + sin(t) cos(t) - £ sin2(t)/gl/(2g)
For the straight line portions the incremental area is ab.
The abscissa of the centroid is determined by summiug the
contributions from each section and then dividing by the total area.
For the ellipse sections the contributions are determined by integrating

equation 22 times a:

/ bada = h3[-cos3(t) - fsin3(t)/gl/(3g2)
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For the straignt line portions the contribution is bal/2.

Similarly the ordinate of the centroid is determined by summing the
contributions from cach section and c¢iviaing by the area. The ellipse
contributions are equal t> one hailf the inteyral of the square of
equation 22:

a B .
- g<) 51n3(t)/g]/(032),

1/2 7 b2da = w3 [2{cos (¢ =+ Jgsinly) + (4

—

and the stra2:ghc line contributions are ab?/2.
Whete sin{t) = aw/n,
L= e1afezy,
g = sqrtid)/z;yy, and
b= sqrile/egy).

The rovtine combines theee contributions to compute the centroid
anc the area. The true area is the area compurited by this routine times
the magnitude of the cross product of the U ana V vectors. The true
area it not computed since it 1s nut currently usad.

4.2 MUDIFLCATION OF GTHzZK RUUTINES

In the development of the edge effect routine it was convenient to
have the vectors U and V, which are the sides of the parallelogram of
the firite plane, available. Hence the dimension of the plane array in
COMMCN/CNTSRF/ was changed from 17 to 24. This change was made in all

routines that included this COMMON. The new format of the plane array

18 given in the table below.
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subscript

1, 2, and 3

4

5, 6, and 7

8, 9, and 10
11

12

13, 14, and 15
16

17

18, 19, and 20
21, 22, and 23
24

Table 1

Format of PL Array

Degcription

unit exterior normal, %, to plane,
TP

F1

Gp, unit vector perpendicular to side
P3 - Pl

%pT(ﬁ -P1)

A . . .
Vp, unit vector perpendicular to side

P2 - Pl

Vp TPl

%pT(—E - P1)

P2 - P, T vector

not currently used

Pl, P2 and P3 are the points defining the plane.

Subroutine ROTATE was modified to rotate the proper components of

the new PL array.

Subroutine FINPUT was modified to allow the input of the parameter

used to select the edge effect option in subroutine PLELP.

Subroutine EQUILB was modified to use the new PLELP instead of

using a shortened version of the subroutine.

In making changes to PLELP, a number of improvements were developed

to sections of code that are in both PLELP and SEGSEG. Therefore,

SEGSEG was changed to incorporate these improvements.
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Listinge of th~ chenged subroutiaes and new PLEDG and PLREA are in

Volume 3. New or clanged lines have EDGE in column 73.

To use this new optice changes :o the I'.i cards are requived. The

changes are described in the input description in Volume 2.
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5.0 MULTI-AXIS ANGULAR VEHICLE DISPLACEMENT

ATB-II and subsequent versions of the ATB Model allow the user to input
a specified motion for predesignated segments. Thus input may be in the
form of positions, velocities or accelerations. However, position
information for angular orientation may be specified only for ome axis,
i.e. yaw, pitch or roll. In order to remove this restriction it was
necessary to develop a technique that will allow general angular

orientation data to be used.
5.1 MATHEMATICAL DEVELOPMENT

Given the yaw, pitch and roll angles of a body at specified points in

time:

Let TM(n) be the time at point n, where n = 1, N
(these time points need not be equally spaced),
Al(n,1) be the yaw angle at point n,
Al(n,2) be the pitch angle at point u,
Al(n,3) be the roll angle at point n, and

N number of data sets.
The angular velocity V may be calculated from the quaternion product

V=2q" 3 (23)

and the angular acceleration from,
- * N
A= 2q 4D (24)

where is a column matrix (3x1) with components V(i), 1 = 1,3

> <

is a column matrix (3x1) with components A(i), i = 1,3

is the quaternion representing the angular orientation,

el

q* i6 the conjugate of the quaternion g,
q is the time derivative of the quatermion g, and

4 is the second time derivative of the quaternion q.
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The quaternion q may be represented as a column matrix with
components q(i), i = 1,4. It is conveniert to consider the first
component q{(1) as a scalar and the other three as a vector, i.e. a 3xl

matrix hence let

c = q(l1)

§ = a 3xl matrix with components q(i), i = 2,4 and let
e = q(1)

VvV = a 3x] matrix with compoments (i), 1 = 2,4

e = q(i}

a 3xl matrix with components q(i), i = 2,4

<
il

The quaternion q may be determined from th: direction cosine matrix
representing the argular orientstion of the body. The direction cosine

matrix i1s obtained froec the yaw, pitch and roll angles.

p=(c?2-slg)1r + zwal -2¢ (T «)

where D 15 the direction cosine matrix (3x3),
1s the transpose of the matrix G,
(U x) 1is the matrix representing the cross product operaticn

and,

I

15 the identity matrix.

From the above equation one has

RT - D=4 c¢ (T x) and

trace(D) = 3 2 - gTs = 4 ¢?2 -1 since c? + uln = 1.
Therefore Q(1) = ¢ = 0.5 SQRT(D(1,1) + D(Z,2) + D(3,3) + 1),

Q(z) = “(l) = (0(2,3) - D(3)2))/(4 C))

0(3) = u(2) = (D(3,1) - D(1,3))/ (4 c),

Q&) = u(3) = (D(1,2) - D(2,1))/(C4 ¢).
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It should be noted that the magnitude of the u(i) may be computed from
the formula u(i) = SQRT((D(i,i) + 1 - ¢2)/2). This may be used in the
special cases where ¢ = 0. The signs of the u(i) may be resolved by

examining the signs of the off diagomal terms of QT + R.

Assuming that these angles are continuous in time, ¢ and 4 can be fitted
with the Spline Routine that is already part of the ATB Model. The
Spline Subroutine produces a set of functions SP(i,j,k) for a cubic

spline which preserves the given values of the quaternion:

SP(1,3,k) = TM(3) »1 = 1,N, k=1,
SP(2,j,k) = qlj,k) »3 = LN, k=1,
SP(3,j,k) = ql(j,k) ,j] =1,N, k=1,
SP(4,3,k) = q2(3,k) ,j = 1,8, k =1,
SP(5,j,k) = q3(j,k} ,j3 =1,N, k = 1,4

where ql, q2 and q3 are the linear, quadratic and cubic terms determined
by the spline routine. These were determined such that the first and
second derivatives of the piecewise cublics are continuocus at the
specified time points and the sum of the squares of the changes in the

third derivative at these polints is minimized.

Using these spline functions as interpolating functions, values of the
quaternion terms may be determined at intermediate time points by the

formula

B(t,k) = SP(Z,m,k) + X (SP{(3,m,k) + X (SP(4,m, k) +
X SP(5,m,k)))

where B(t,k) 1s the interpolated value of quaternion term k at time t,

X =t - SP(l,m,k) and m is selected such that,

X is positive or zero and t ~ SP(l,m,k+l) is negative.

The values of the time derivatives of q are estimated using the

derivative of the spline interpolating formula at each time point,
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G(k) = SP(3,k,3) + X 12,08P(4,k,L) + 3.0 X SP(5,k,L)

n

qlk} 2.0 SP{4,k,L) + 6.0 X SP(5,k,L)

The values of g, 4, and q are then used in equations 23 and 24 to

calculate the angular velocity and acceleration at the specifiad time

points;

in detail:

V(1) = 2 Cev(l) ~ e ull) = v{2y u(3;, - v.3) u(2) )
Vierd = 20 ¢ w(2) = e vi2, + vX3) utl) = v(l) u(3)
Vidy = 2 C ¢ v(3) = ¢ ul3, +v(L) alZy = w2} u(i) )
A= 0(ed - 3o+ v ox O
In detazxl

A1) = 20 e wil) — e ull) + 312) w37 - v0(3) ul2))
AC2, = 20 ¢ w(2) = ¢ u(2) + v{3) 201} - v(1) u(3))
AlD) = 20 covld, = & uf3; + vll) uves - S(2) u(l))

The angular acceleration 1s saved and used tu prescribe the vehicle
motion as 1t 1s {or the other cases whern the angular vetocity or

acceleration is 1nnut,

5.2 CHANGES 70 THE PROGRAM

The above calculations are done in subroutine, VINPUTI. A new
subroutine, QUAT has been added to calculate a quaternion from the yaw,

pitch, and roll angles. Both VINPUT and QUAT are listed in Volume 3.
The changed linec in VINPUT are labeiled with JTF984 in column 73.
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6.0 SLIP JOINT

The ATB Model i1nsures that joints do not pull apart by imposing a

constralint force.

termed a '"Blip joint".

A new feature that has been added to the model 1is

The slip joint allows one segment of a

particular tree structure to move linearly along a prescribed axis with

respect to the adjoilning segment.

6.1 MUATIONS

First, we look at the equacicns for 8 two segment model.

The linear equations of motion sre:

subject to Lbie

Ry oepplt
where
mi,m?7 are
;(l, )_':2 are
il’ iz are
T], T2 are

(25)

velistrgrint eruarion:
i LR D LR (26)
segment 1 and segment 2,

the masses oi

the jocations of the centers ot gravity (inertial

system),

the linear acceclerations {(inertial system),

the locations of the joint conrecting the two

segments (local system’,




- —— g

T . )
R, Dnl dre the transposes ol the direction coclle

matrices,

Uj)s, Uy @re the external rorces sciing on Lhe segnents

-

(tuertial system), aad

t 16 the counstralnt force at the joint (inertial

system, .

for the standarae joiur, T} ana I are fixed

y]

in the local reference
systems »f the res e tive sexrents, 1.e. tuo Joint does not L)l apart.

Fer the stsp deint, equation 26 1s tepiaced by the egquatica

S

td ]
e
!
o
—
P
4
—
+
o
|
]
i
o
[
o]
L)
—
[ )
~I
~

[d

where ¢ :e ulrplecement ot the jcint reiative to the fixed positinn TJ.

-
~
-
<
—
b

The vectour ¢ 1+ _oustrainad

1

zlong a vecter fixed in segment 1.

Thus, ferv che dispiacemcert i the joiut

viler e L 13 a scaser (saitiailzed to U0 and
T1f a veonur fiXed 1n oseguent i,
“lr 1s selected an the z axis of the lecal joint

reference system in sogment 1).

In order to solve the system squations, equetion - Lust be doubly
differentiated to obilaln am eguation for the accelerations. Performing
this differentiation prcduces a term invoulving the acceleration of the
scalar a. Since this 1s not known, 1t wmust be elimineced. This is done
by eliminating the component of the differentiated equation 27 that 1is
pacallel to the vector h resulting in a vector equation of rank 2. To
produce a complete set of equations an equation which states that the

constraint force, f, have no component along the free axis, h is added
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to the system equations. This process 1s similar to the process used

for joint constraints as described in Volume 1 of reference 4.
6.2 IMPLEMENTATION
To define a joint as a slip jecint the user 1s asked to provide

additional information on the first card of the two card set B.3.Al -

B.3Jl. On this card the user specifies:

JOINT(J) as before,
Js(J) as before,
JNT(J) as before,
IPIN(J) as before plus these new options;
=5 slip join® with complete angular freedom

(same as IPIN = 2 for angular motion),

= b ~i1p joint with pin as y-axis ot joint
{same as LPIN - 1 for angular motion),
(program will use the flexural spring

characteristics),

= 7 slip joint with pin as z-axis of the joint in
segment JNT(J),
{program wiil use the torsicmnal spring

characteristics),

Negative numbers may be used to indicate that
the joint 18 initially locked, however, if a
negative number is used <o indlcate an
initially locked slip joint, ISLIP cannot be O
(see ISLIP below).

SR(I,2%J-1) as betore,
SR(I,2%J) as betore,




e -

ISLIP new parameter,
= | Joint 1s a s8lip joiut,
= 1) standard joint ov univesed slip joint,
=-] joint 18 2 slip jeiat which may be locked or

unlocked (cr angular wotion (depending on +

or - 1PIN), but 1v locked ‘¢ linear motion.

Cl new parsweLvl, & iLagative number for the value of

<

watocking forow oo tension,

L new parameter, a positive nuxboer for the value of

uplotkirg torce for Sompressioun.

1

If ¢! arag Ul ove beibih zero the ~oint will not unleck

The slip 1oints allow ine J + 1 _ciot coord.nale Byefem to move &aiong

the z-axis ot the JNU(J) soinit ccordirace cvsiem. Tewnsion 1€ movement

poUEiItive z-axis and JOMPTresslon alony ife Lugative z—axis.

along the

When the slip joint 1s tree to 3'1p, wspring and vamper forces may be
introduced on the slip axie by using the spulng comper optionk 1m the

model. The spring damper cvtioa .3 specifi.c on the D .8 cavds. The

coordinates of the attactment poiuts shouid be selected as the lecation

of the joiut in the r:spective =Cgwetils.
6.3 CHANGES TO PROGRAM

The dimension of parsm=ter SR in COMMON/DESCRF/ has been changed to

S%(4,60). For joint J the value of 'a' (see eqguaticn 28 above) is

stored 1n SR{4,2*J~1) and the value 2f the time derivative of 'a' 1is
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stored in SR (4,2%J). These values are initialized to zero by
Subroutine BINPUT and are computed by Subroutine CHAIN. The change was
made in all routines using this COMMON block.

A pew matrixX All has been added to COMMON/CMATRX/. The dimensions are
Al1(3,3,30). Refer to section 4.7 of reference 4 to see how this matrix
is used in the system equations (the matrix Bll is the transpose of
All). Matrix All is computed in Subroutine SETUPl. Thie change to the
COMMON bluck was made in all routines which use this COMMON block.

Subroutine BINPUT was modified to input the parameters ISLIP, Cl, and C2
(see the sbove section on implementation). The value of ISLIP is stored
in the LEULER array and values of Cl and C2 are stored in the CONST
array. These arrays are in COMMON/CFULER/.

Subroutine CHAIN was modified to compute the value of 'a' and its
derivative for a slip joint. The values of SEGLP and SEGLV for segument
J+1 (joint J) are adjusted to insure that the slip 1s on the prescribed

axis {(axis h equation 28 above).

The DAUX subroutines were modified to i1ntroduce the matrix All into the

system equations and account for values of IPIN of 5, 6, or 7.

Subroutines DHHPIN and DRIFT were modified to account for the new values

of IPIN.

Subroutine PDAUX was modified to allow for the integration of the linear
position and velocity of segment J+1 if joint J is a slip joint and is
tree to slide.

Subroutine ROTATE was modified to accommodate the slip joint.

Subroutines RSTART and SEARCH were updated to account for the change in

the dimension of SR and the new matrix All.
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Subroutine SETUP] was modified to compute the Al} matrix and the VI

array for the joints.

Subroutine SETUP2 was modified to account for che new values of IPIN.

Subroutine UPDATE was modified to unlock the linear motion of a slip

joint based on the parameters Cl ard C2 descriped above.

Subroutine VISPR was modified to accommcdate the new values of IPIN.
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7.0 HYPERELLIPSQID OPTION

In order to improve the modeling of corners and other geometries the
option to use hyperellipsoids as contact surfaces rather than standard
ellipsoids was added. This option was originally developed for General
Motors Corporation and has been incorporated into the ATB model with

their permission.
A hyperellipsaoid is defined as the surface generated by the functional:
F(5) = [x/a]® + [y/b|® + [z/c|m (29)

where

]}

18 the vector from the center of the hyperellipsoid to
a point on the boundary,

X, y, 2 are the components of P,

5
o
(g}

are the semi-~axes' lengths, and

m 18 the power of the hyperellipsoid, an even integer.

As with an ellipsoia if
F(p) = 1 the point § is on the hyperellipsoid surface, if

F(B) <+ 1  the point P is an interior point, and if

F(P) > 1 the point P is an exterior point.

If m = 2 the surface is an ellipscid. For larger values of m the figure

"squares off" at the corners. As m approaches infinity the figure

approaches a rectangular parallelpiped with the same dimensions as the

hyperellipsoid. This makes the hyperellipsoid very useful for

describing contact surfaces.

To compare the hyperellipsoid shape to a parallel piped let x =ra, y =
rb, and z = rc in the functional, then the value for r for which this

point is on the hyperellipsoid surface is given in Table 2 for various

powers of m.
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X =a, y=~>b, and 2 = ¢ is & vector to the corner of tihe parallel piped,
therefore r is the ratio between the cumpunents of the vector on the
hyperellipsnid surface in the direction i the parallel piped corner and

the components of the vector to the cor.aer.

Note that for m = 128 the ellipsoild point :s within 1% of the cormer of

the rectangular parallelpiped.

TABLE 2

Corners of a dyverelilpsnid

m T

: 0.5/735

U.75984

5 (.87169

16 0.93364

32 U.96025

64 0,538,958

128 U.39145

256 0.99572

512 $.1397285
.arge l-tgeis)/m =1 - 1.0986/m

7.1 CONTACT WITH A PLANE

Subroutine PLELP computes the contact witn a p.ane and has been modified
to allow the usc of hyperellipsoids. If the surface is an ellipsoid
represented by the oid format the original method of calculating the
point of maximum penetration is used. If the rurface is a
hyperellipsoid the surface point whose normal is perpendicular to the
plane is the point of maximum penetration and can be found by taking the

gradient of the functional in equation 29;




m/x m-l. m/y m—1 . n/z m-1 a
I = =1 - T J + = - k=- aT (30)
a\a b\b ¢ \c

where @ 18 a positive scalar and

T is the outward normal to the plane.

The coordinates x, y and z of the point of maXimum penetratiom are
readily obtained from equation 30 as functions of @. ucan then be
computed by substituting these coordinates into equation 29. This
computation is done by the double precision function HYPEN. With the
value of 3, the point of maximum penetration, XH is computed and a scale
factor, FM, 18 determined. This scale factor times the vector X owill
produce the vector from the center of the hyperellipsoid to the plane.
If the surface is an ellipsoid, this vector will locate the ceuier of
the intersection ellipse in the plane. The quantity AMR = 1-FM® js then
evaluated and if it 1s less than or equal to zero there 1s no contact of

the surface with the plane and no further computations are done.

1f there 1s contact, the contact is checked to determine if it is within
the boundaries of the plane and the forces are applied as described in

Section 4 of this report and Vol 1 of Reference 4.
It should be noted that the roll~slide option can not be used with
hyperellipsoids.

7.2 CONTACT ANOTHER HYPERELLIPSQID

Modifications were made to subroutine SEGSEG to handle the contact of
two hyperellipsoids. Also two new subroutines HYEST and HYNTR were
written to replace subroutine INTERS to calculate the penetration

parameter and the point of force application.
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To determine 1f penetration exists and the point of force
applicaticn,three conditions must be met. First the point ol force

application must be the same in both segment coordinate systems:

g=1I(p - d). (31,
Where
P 1s the point in the first segment's principal coordinate
system,
q is the point in the second segment's principal coordinate

system,
d 18 the vector betweeun the centers of the two surfaces in the

first segment's principal coordinate system,

1]

is the transformation matrix from the first to the second

segment's principal coordinate system.

The normal tc each surtace passing through this point must be parallel

and opposite it sign:

TE(B) = —c v G(T) (32)

F(p) 1s the functional of the first hyperellipsoid at point P,
G(a, is the functional of the second hyperellipsoid at point a,
1e the vectcr gradient, and

C 1s a poslitive scalar.

Finally, the point is chosen to be within esch hyperellipsoid a distance

proportional to the hyperellipsoid size:

F(p) = G(§) (33)

If the value of F(P) (and G(§)) is less than 1 the figures intersect, if
the value is greater than 1 no intersection occurs and if the value is 1

the figures just touch at the point P.
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In the original algorithm, since the figures are ellipsoids, equations
(29) and (30) may be combined to form a matrix equation which can be
solved for p as a function of the scalar c. A Newton-Raphson iterative
method i1s then used to determime the value of ¢ that allows all three

equations to be satisfied (Subroutine INTERS).

ln the hyperellipsoid case, equation 30 is no longer a matrix equation
and so a different approach was developed. To obtain a first
approximation the hyperellipsoids are treated as rectangular
parallelpiped 'boxes' whose half-widths are the same as the semi-axes of
the hyperellipsoids. Subroutine HYEST determines whether or not these

'boxes' intersect.

If the ‘boxes' intersect, subroutine HYNTR is called to refine the

estimate.

7.3 NEW SUBROUTINES

A number of new subroutines were added to the ATB model in support of
the hyperellipsoid optiou. A description of each of these routines
follows. It should be noted that in several of these routines to obtain
approximations of desired quantities reference is made to a 'box'. This
'box' 1s the rectangular parallelpiped that is centered at the center of
a hyperellipsoid. The edges are parallel to the principal axes of the
hyperellipsoid and the half-widths are the same as the semi-axes of the
hyperellipsoid. For large values of the power (the exponent) the

hyperellipsoid almost 'fills' the box.

In order to store the variables required to define a hyperellipsoid the
BD array conteining the ellipsoid parameter was reformatted. The

formats now used are listed 1n Table 3.
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TABLE 3

Format of BD Array

old format new format
Subscript ellipsoids only hyvperellipsoids
1 a -1 power of x
2 b a
3 N o]
4 G(L) <
5 0C<) 0(1)
6 9(3) 0(2)
7 DTED(1L, i) 0(3)
8 pTED(2, 1) D(1,1)
9 pTED(3, 1) D(2,1)
10 nTEn(i1,2) p(3,1)
11 pTEL 2, 2) D(1,2)
12 DYEDLS, ) D(2,2)
i3 2TED(L, 3) B{3,2,
14 DlEDC £, 3) S,
15 DIEDL3, 3) D(2,3)
16 Dirpel, 1) 03,30
17 DYEDLC, L) 1/a?
16 DTFDIs, 1, Jlee
19 oTFDCL, &) Lies
20 DAFDLZ, 1) I power of x
21 DTFD(, 2, m pcwer of vy
22 DUFDUL, ) n powet of z
23 cTenc2, ) 5 il equal powers
2 DIEDL3, 3. it —used
where: 1, m, n are the powers of the hyperellipsoid,

a, 0, ¢ are the seml axc¢e of the (hvper)ellipsoid,

0 is the offset of the ellipsoid trow the c.g. of tne segment,

D is the direction cosine defining tne orientation of the
(hyperjeliipsoid with respect to the segment principal axes,

DTEQ is the ellipsoid matrix, and

QTEQ 1¢ the inverse of the ellipsoid matrix.

J.3.1__ Subroutine HYABF (B, 2, &, F)

This routine cumputes the hyperellipecid tunctional, F, and it's

derivatives. It 1s cailed bty subroutines HYEST and HYNTR.

Inputs:

B BD array for hyperellipsoid containing w, a, b, ¢

Z array containing x, y, 2
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Equations:
F = (x/a)® + (y/b)® + (2/c)®
ym—l/am

(VF)/m = yB~l/pm
zm-l/cm

The diagonal hyperellipsoid matrix 1is

(x/a)n=2 0 0
0 (y/b)®™2 0
0] 0 (z/c)m=2

Outputs:

A 3x3 matrix containing the diagonal elements of the
hyperellipsold matrix in the first column, the

components of F in the third column.

the value of the functional

x

7.3.2 _Subroutine __HYBND(M,Z,IV,U,C,X)

This routine computes a point on the polygon, determined from the
intersection of a plane with a box, that is furthest from an interior
point ot the polygon in 2 specified direction. It is called by

subroutine PLEDG.

Inputs:

-

M  number of points in array Z,

N

array determined by subroutine HYBOX,

IV pointer array determined by HYBOX,

57



\ vector directioca or iaterest,
{_+l, use direction of U,

C -1, use -U direction,

Outpuc:

X point sn box in direction cof C*

Equations:

The daistance of poimt  from the origin 1a the direction

G 1s given by
a = ULz 7%
Procedure:

The velnts are rxamited and the cre yielding the maximum d

15 stored in X. Llf two " oints give the sane distance X 18

theilr average vaiue (Lne mid-Lolut/.

CBYBOXGL, T, By N, 2,0y

This routine computes the 1nterscctior ot a plane vith the edges

a rectangular box. 1t iz called by subroutine FLEDG.

Inputs:
E array coantaining a, b, ¢, the half-widthas of the boux.
T the vector normal to the plane,
P the coordinates ot a point on the plane.
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Cutputs:
N the number of paired solutions,
1v pointers to on ordered set of solutions,
ZC the cooruinates of the points of intersection.

Equations:

Let the origin of coordinates be tle center of the box and let the
vectors E(i), i = 1, 2, 3, be parallel to the edges of the box and of
length equal to the respective half-widths.

Let Z be the vector

7 = u E(l) +v E(2) + w E{3), where u, v, w are scalars.

Z is a point in the pox it -1 - u, v, w - 1

1t T1Z = T1P the pornt is 1in the plane.

Procedure:

The box has & surtaces, each of these is selected 1n turn and the

functional T1Z - TIP 1is evaluated at the four corners of the surface.

It the functional changes sign between any adjacent corners the

plane intersects the edge of the box between these corners.
The intersection point 1s computed aund stored in the array ZC.
For each surface, points are obtained 1n pairs, lines of
intersection of zero length are ignored. The maximum number of pairs

will be 12 and the minimum will be 6 if there is a true intersection of

the plane with the box.
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It at least ¢ pairs were tuund the location in the array ZC of a

unique peath over the surface or the box 1s determined aud stored in the

array JV in such a fashion that the sequence

J = Ivik) , k=1, 3, 3,..., N-1 will determine the path going
through the poiuts ZC(*, 1),

3:4 Subroutine = _HYDAD(D,A,DAD,

-~

{

This routine ccmputes the matrix DIAD where D 1s a direction cosine

watrix and A 16 a diagonal matrix. it is called by subrcutine HYNTR.

Inputs:
L 3x3 direction coglne matris,
A array centeining diagoral clemeuts of A (see HYABF)
Cutput:
LaD the 3x3 product natrix, QT_Q,

Prucedure:

The computaticn 18 & straignt-forward matrix multiplication.

1.3.5  Subroutine  HYESI(BHM,BN,IAB

This routine 15 called by subroutine SEGSEG to make a preliminary

estimation of intersection ul two hyperellipsoids if an estimste docs

not exist. It 1s called by subroutine SEGSEG.

Input:

BM, 3N BD arrays containing the data defining the

hyperellipscids m and n,
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The following inputs are in COMMON/TEMPVS/

]|

Output

TAB

the vector from the center of hyperellipsoid m to the

center of hyperellipsoild n.

the direction cosine matrix which transforms for the

segment veference of n to the segment reference of m.

array used as a mewmory, contains the same information
as the V array described below 1f there is an

Intersection.

The tollouwlog outputs are in CUMMON/TEMPVS/

ViQis

array contalnioy the tellowing,

valuc at . (ALP), ratioc of magnitudes ot pgradients at

the ntersection polnts,
volue of (BEJ, the expansicon facter,
pOLBL ol Oyperesilpscld Im,

puint on bywerellipscid a.

il




! Equatiors:

|

Let Z be a vector cn m and U be a vector on n where

Z=U+ R ;r 1s an expansion factor,

. = JF,j 1.6, wiere F and G are the hyperellipsoid

functionals for Z aud U respectively,

Procedure:

The hvperellipsoids are treated as boxes and subroutine HYLPX 1s

called to tind the largesi value o1 . Z and U that satisfy the

equation Z = U + . R.

If tne value of ~ 16 1ess than . there 186 no intersectiorn and the
routine exits storing the value orf . 1a the TaB array. The routine also
ex1ts for a value of . equal to ! since therc can be no penetration.

if the value of - 18 greater thap 1 there 1s an lntersection of the

boxes. In this case the points Z snd I gre scaled te lie on the
respective hvperell:psoids, the value of . 1 estiwated and the value of
for the :caled points 16 estiwated. The tesults are stored in the TAB

array.

7.3.6__Doublev Precision Function _ _HYFCNIC,Z,A,P)

This function is used py subroutines HYABK, HYLIM, and HYVAL to
evaluate the term HYFCN = C( Z /A)Y 1u such a fashion as to prevent
underflows. The value cf A is always greater than zero and P 1s

non-pegative.




B T

S

PR

Equations:
If P = 0, HYFCN = C and if Z = 0, HYFCN = 0.
For P >0 and Z # 0, the value of a parameter q 1is determined;
q = P(In|Z| - 1lnA )
If q . ~88.5, HYFCN = 0. Otherwise HYFCN = C exp(q)
Procedure:
The equations are evaluated as above. The value of -88.5 should be

adjusted to represent the smallest value which will not produce an

underflow on the computer being used. (exp(-88.5) = 3.6%10(-39))

7.3.7 _Subroutine _ HYLIM(A,U,B,V,C,W,Z,8D)

This routine 1s used to calculate the boundaries of the figure
formed by the intersection of & hyperellipscid and a plane, i.e., the
point r.u the tigure whose abscissa i& a minimum or a maxXimum. It is

called¢ by subroutine PLEDG.

Input:
U vector detining horizontal axis (abscissa)
¥  vector defining vertical axis (ordinate)
¢ scalar multiplier of Z
W  vector such that C* is in the plane
Z estimate of desired point

BD array containing parameters of hyperellipsoid
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Output:
A scalar multiplier of v
B scalar multiplier ot v
Z  desired poiut

Equations:

™~y
1t

>

e

+

o]

<
+

CW ; origin 1s center of hypereliipsoid,

=1

= UxV ; vectoer cross product, s vector perpendicular

te plane.

Lonstraints equations,

o

TEZ = 1 ; runctional equaticn ot hyperellipsoid,

VTLZ = J , boundary comnstraint, ncrmal perpendicular to

ordinate,
T1Z2 = ¢TW ; 7 must lie :n plaae,
Procedure:

A riisi estimate Was obtoinee belvre c2lliag this reouvtine by & cell

to HYBND. This estimate 1s the vaiue of & ou antry.

First order perturbation oquations are uged to vefine the value of

Z. These equations are:

ZTED = (1 - ZTEZ) /m
VTEE = —VTQZ/(m—l)

TTD = ¢TW - 19




where D is the perturbation of Z and m is the power of the

hyperellip

sold.

The equations are solved for D and Z is updated as Z =127 +D.

The process is iterated until the perturbations are small whep

compared to Z.

When convergence 1s obtained the values of A and B are computed.

7.3.8 Subroutine __ HYLPR(J1,J2,ID,C,S,E,T

This routine 1s a simplex method for solving a linear programming

problem.

lnput.

J1

J2
1D

ln o)

=

It is called by subroutine HYLPX.

index of first column to search,
index of last column to search,
pointer array to identify columns,
cost vector,

constralnt array,

temporary storage for pivot column,

Output:

[ (7]

iD

vector indicating final costs of each column,
right hand column contains solutions obtained,

pointer to identify columns.

65




Equations:

192}

15 a matrix whese rows are the constraint equestions and
whose columns are the coefticients of & particular
variable in these coastraint equations. The last column
ot S 18 the constant term in Lhe equations.

T IITETS o - . o
. r(3) = LlTb(*,J) - C{(k), = Jl, J2, k = 1D(3)

where Cl 1s the cost vector of the current solution.

Procedure:

The simplex algorithm 1s used The values of T(3) are computed 1f
any T(j) is positive, variable ; is entered intc the solution, replacing
the variable whose elimination will reduce *he cost. Pointers to the
current solution variables are kept in the D arvay which 1s upcated.

The process is itevated untii aiyv TO,) are nonm-positive.

The J1 = JZ the variable 1dentified with coltumn Jl 18 torced 1nto

the solution and no 1teration 1s pervfoimed.

This program 18 <alled by subroutine HYEST to solve for the estimate

of the pcints of intersecticn of (wo hyperellipsoilds.

[nput:

BM,BN BD arrays contajining the parameters of hyperell:ipsoids

| m and n.
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The following inputs are in COMMON/TEMPVS/

kel

the vector from the center of m to the center of n.

D the direction cosine matrix which transforms from the n's

reference system to m's reference system.
Output: (in COMMON/TEMPVS/)
vii) an array containing the following;
i=1, 2,3 point on the box enclosing hypereliipsoid m,
1 =4, 5, b point on the box enclosing hyperellipsoid n,

1 =7 the expension factor.

Censtraint bkquations:

Z - V-.R=uU0
2¢1) a1), where a{1) are the semi-axes of m, 1 = 1,3,
Vi) b(1), where b(1) are the semi-axes ot n, 1 = 1,3,

Procedure:

The array S representing the constraint cqustions 1s computed. The
value of  1s assigned a cost ot -1, the values of Z and V and their
associated slack vectors are assigned costs of 0. Subroutine HYLPR 1is
called to solve for the values ot Z and V which produce the maximum

value of
It atter the initial call to HYLPR the associated cost vector

indicates that there 1s more than one solution HYLPR is recalled to find

all solutions and the results are averaged.
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See the descriptiors of subroutines HYEST and HYLPR for mere

detalls.

7.3.10_ _Subroutipe __HYNTR(BM,BN,TAB

This subroutine is called by subrouvtine SEGSEG to deiermine the
points on intersecting hyperellipscids that are used to determine the
penetration (if any) of these figures.

Inputs:

BM, BN BD arrays containing the parameters of the figures

m and n,

TAB array containing the current ectimates of the

desired points,

The tollowing inputs are in COMMUON/TEMPVS/

R the vector trom the center of fi1gure m to the center
of figure n.

D12 the direction cosine matrix which transforms a vector
trom the segment reference systom associated with n
to that of m,

Output:

TAB(1) an array contailning:

1 =1 the value of 1« |
1 =2 the value of v |
1 =3, 4, 5 the value of Z, the point on m,
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1 =6, 7, 8 the value of V, the point om n.

This TAB array is offset such that 1 = I corresponds to a value of 1

= 23 i1n the TAB array used by subroutine SEGSEG.
Equatious:
7=V + ¢ R; relation between points,

F o= -4V G, where F aud G are the hyperellipsoid functionals

for the m and n hyperellipsoids respectively.

Let ¥ = ZTpAZ, ¢ = VIBV, ¥ = AZ, G = BV, and let dZ, dV, d .
and d be perturbations ot Z, V, .. and respectively. The linearized

perturbation equations are:

¢Z - &V - d. K = -7 +V + R
dAZ + +dBV + d . BV = -AZ - .8V
VIgav =1 - vIpv
ZTAdZ -1 - ZTaz

Procedure:

The values stored 1u the TAB array on entry are used as first

guesses to the variables «, o Z and V.
The perturbation equations are solved and the values updated. The
procedure 1s 1terated until the perturbations of Z are small compared to

the value of Z.

When convergence is determined the TAB array i1s updatea.




This subroutine is called by subroutine PLEDG to compute an
approximate area and ceuntroid for the figure formed by the intersection

of a nyperellipsoid and a plane.

All 1nput:i and outputs are in COMMON/TEMPVS/.

Input:
AMl, AM2, AFM, AFrP, AX], AX2, coordinates of the boundaries of
BMl, BM2, BFM, BFP, BXl, BXZ, the figure

AMIN, AMAX, BMIN, BMAX

Output:

ARFA proportional to the area, the true area 16 this number
times the magnitude of the cross product of the vectors
used to define the absclsse and the ordinate of the
courdinate system used in PLEIG.

AR the location of the centrolu in the abscissa coordinate,

BE (e lovatiou ot the centreid :n the ordinate coordinate,

Equations:

Consider the area below the straight liae segment for the point

(xl,yl) to the point (x2,y2). Then

dx = x2 - xl

ar = dx(y2 + yl), twice the increment of area,

ax = ar(x2 + xl) + dx(x2y2 + xlyl), six times the lncrement

of the abscissa of the centroid,
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ay ar(y2 + yl) - dxy2yl, six times the increment of the

ordinate of the ceantroid,

AREA = sum of the ar divided by two,

AB = sum of the ax divided by six times the area,

BB

sum ol the ay divided by six times the area,
Procedure:
The sections of the general shape are shown in Figure 9.

Tests are made tor the exilstence of the sections and the formulae are

used to compute the area and the centroid.

CAFMBMAK) o— —®  (AFDP, BMA‘\: )
(A2 UBMAN) / \( AXT, BMAX)
/ \

/ \

(AN ma= CBAT BMIND / \ (AX2,max (BAZ,BMIN))
S min(BA 2, min(BAL L BMAX))
(M?l.mln\i%;\.,H.\L\.x))\ / (BX.2,min(BAL, )
\ (/

(HT\L‘,'{’,"‘[.\)\ /(BX\ , BMIN)

CREM,BMEY Y e e (BIFP,BMIN)

(b lonsa, rdinate)

Fivure 9 Hyperel Pipseoid Common Area Boundaries
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This routine is a modir:ed Gauss Elimivation process tor solving a

set of simultaneous equaticns. It 1s called by subroutine HYNTR.

Input:

A array containiny the simultanevus equations,

N the number of equations,

ND the tirst subscript ol iie arvay A

Outyput:

A the reduced (solved eguations.  ‘The solutionhs dre 10 Column
N+l ot the arvay.

Procedure:

Gauss - Elimination is used with the pivot alwavs on the diagonal.

No piveting 1s done toer a zerco diavenal.  Thie modiilcation was

necessary beoauss the mati1x A way have an adl osere column fwith o a

correspunding ali zerc row:.

K Y.V:"&LS AU R BO, L

This routine ccomputes the point o o hvperellipsora that lies on a

particular line. it 1s called by subroutire PLEDG.

Input:

(=]

vector defining jine of 1nterest,

ol

vector loucating end point of live,




BD array containing hyperellipsord parameters,

L = 1 indicates point along -U desired,

2 indicates point along +U desired,

Output:
p A parameter detining point on U.
‘ Equations:

Z = AU + R, poiut on line U,

7T§Z = 1, constraint that point lies on hyperellipsoid,

(hyperellipsoid tunctional)
Perturbation eguations:

1

Let t(A) = ZT§Z - 1, and let ¢ be a perturbation of A. Expand up

Lo the second derivative with respect to A to get

tlA+e) = t{A) + et + e~t"/2 = U,

it' 1s the trrst derivative ot t, and £" 1s the secona at A),
e o= =t (A 12 v sienlE (/292 - (a)Evy2)1/2]

Procedure:

Subroutine HYVBX 14 called to determine the porut ou the box

surrounding the hyperellipsold in the dirvection specified by L.

The quadratic perturbation equations are solvea and the process

1terated until the tunctional equation satisfies a prescribed test.
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Subroutine  HYVBX(Q,5,B,M,RM/

This rout.ne is called by subroutine HYVAL to determine the points

1ntersection of 4 vector with a bHox.

Input:

Q vector whioh 1ntersects box,

S fixed vector from center of bex Lo Q
B array contalnltuy JlLensiots 0! LOX,

Jutputl:

M index 1dentifyviong soluticns, M © 2 11 there 1s an
Intersection, M = U for none.
hM Array Lonlaraily Lor two Lolils o) tnlersection it they exist.
b ¥ | 3

bgua ious:
1

Lo oy o+ 8, seuerar wolut oon vy,

Precedure:

It Z 1s a poiat on a raue ot the bex some cunponent of Z must equal

dimension ot the box. Lt

Bty Pe + o - tne naltl wiaths ot the box,

Z{avj, QLiy and S be the corresponding compouents ot the

vectors 4, 4, and & respectively.




eV (bly) = Stajgae + SO5Igt ), BL3JQ(1), then

the point determined by ¢ = (B{i/j - 5(iJ)/Q(i) will be a desirea
point. The 1nequality 1s tested tor all combinations of the indices and
the unigue soluticns tor r are saved in the array RM. Before exiting
the BM's are oraered such that RMUL) 1s tnhe smallest algebraic solution
and RM{Z) 18 the lurgest.
Function  HYPENUBD,E,Y)

This routine 18 culled by subrcutine PLELP to comjpute the value i
ALY wulen 1 wosed 10 the computatien ot the intersection ot a

hvperellipscrd witt a piane. The powers «f the hyperellipsolrd

oot M chia may Do il ierenl,
ST an culygtingtg fvpercliypscrae 'ntourcation,
. S . A Lal oD,
- ~ ! watutatlon.
<
v ot ooon by otne nyperellypscne
L N Cot Ll GeFivallili o woe wsntitie Ky 1oand
S .
Pl NN i ’
5 ' r ' . VA 1 \ i i
:



At the point ol maximum penetration the gradient must be parallel to
the plane vector (ty,ty,t3), 1.c.
k~1 o 3

X/a, = Abd 1y df¥%,

cyib Th = ALP t bl

Let: vy = | Uy a, wivl, e, = ksik 1,
v cLol i live e P
. bty [ S ROV
WACT e O S AN el pe Gre computed by
R T S 1 | SNSRI o (N

Do oo Coanstoes o suan that the jundtional

cGuatlodn L NoTe B KA S S Thiv cguation wayv be
Wi ulien s

i A"‘; P Y YO o el EY i

re

BT t o + + + b i I8 x K H v e ' T Q

Sle e ponent, vy dhb e lated WL Lhe madsaimim vdilue O Vo= 18
deteniiboeg. Joe vaies of sl s Lirst estivated as:

ALY ~ 1o o1y [ {1 e }

'




The value of F(ALP) 1s computed. If [F(ALP) is less than 1079 the
tunctional 1s assumed to be satisfied and the routine exits. If the
F(ALP) 1is greater or equal to 1078 & stepplung procedure 15 used tu
modity ALP until convergence i1s obtained. Note: if the exponents are
all equal, the first estimate of ALP should satisfy the convergence

test.




8.0 OTHER NEW OPTIONS

A number of minor moditications and <orrections have been made to the
ATBI1I model. These changes have a label other than the subroutine name
in column 73 of the program listing in Volume 3. Most of these changes
have been to correct errors 1n the code, to add stops to avoid input
€rrors or to improve the output format. Those changes that allow the
user tou choose a new option are described briefly below. A more
complete description of the use of these options 1s in the input

description in Volume 2.

Three new time histories have been added. The H.8 cards allow the wind
turces on any segment to be output, the total torces and torques at a
juint can be output using the H.9 cards, and body properties of a single
segment or a set ¢f segments can now be output using the H.10 cards.
These body properties i1nclude the center ot mass location, total linear
and angular momentum and kinetic energy. The H.l cards now allow the
acceleration output to include the etfects ot gravity. This allows the
atcelerations te be compared exactly with accelerometer data.  Aipse the
user now has the uptiutt to chuose the reterence system in which many ot

the time nrsturies are output, by specifylng KREF 1n the M cards.
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